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Abstract

We study thekth positive eigenvalueλ(p)
k (M,g) of the Laplacian onp-forms for a connected oriented

closed Riemannian manifold (M,g). If all non-trivial harmonicp-forms on (M,g) have constant length,
then it follows thatλ(p)

k (M,g) ≤ λ
(0)
k (M,g) for all k ≥ 1.
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1. Introduction

Let (Mm, g) be a connected oriented closed Riemannian manifold of dimensionm. We
denote byλ(p)

k (M,g) thekth positive eigenvalue of the Laplacian� = dδ+ δd acting on
p-forms on (M,g) counted with multiplicity.

∗ Tel.: +81 22 2174638; fax: +81 22 2174654.
E-mail address:junya@math.is.tohoku.ac.jp (J. Takahashi).

0393-0440/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.11.007



J. Takahashi / Journal of Geometry and Physics 54 (2005) 476–484 477

In our previous papers[14,16], we studied the gap

Gap(p,0)(M,g) := λ
(p)
1 (M,g) − λ

(0)
1 (M,g)

of the first eigenvalues of (M,g). We proved that for anym ≥ 4 dimensional connected
oriented closed manifoldM and any 2≤ p ≤ m− 2, there exist three metricsgp,i (i =
1,2,3) onM such that Gap(p,0)(M,gp,i) is positive, negative and zero (Theorem 1.2 in

[16]). In the case ofp = 1, since∆ andd commute, it always holdsλ(1)
1 ≤ λ

(0)
1 , that is,

Gap(1,0) ≤ 0. We also obtained a similar result. For anym ≥ 3 dimensional connected
oriented closed manifoldM, there exist two metricsgi (i = 1,2) onM such that Gap(1,0) is
negative and zero (Theorem 1.1 in [16]). Thus, we see that the sign of the gap Gap(p,0) is
not a topological invariant of closed manifolds.

On the other hand, there are some relations between the sign of the gap and the geometry
of (M,g). For example, if Gap(1,0) is negative for a connected closed Einstein manifold
with positive Ricci curvature, then the identity map is weakly stable as a harmonic map
(Theorem 1.3 in[14]). If a closed Riemannian manifold has a non-trivial parallelp-form,
then Gap(p,0) is non-positive (Proposition 1.3 in[16]).

In the present paper, we study an extension of this result. We prove that if all non-trivial
harmonicp-forms on (M,g) have constant length, then Gap(p,0) ≤ 0. More precisely, we
have the following.

Theorem 1.1. Let (M,g) be a connected oriented closed Riemannian manifold with the
pth Betti numberbp(M) ≥ 1. If all harmonic p-forms have constant length, then for all
k ≥ 1 it follows that

λ
(p)
k (M,g) ≤ λ

(0)
k (M,g).

Furthermore, the equalityλ(p)
1 (M,g) = λ

(0)
1 (M,g) holds if and only iffϕ is a first positive

eigen p-form on(M,g), where f is a first positive eigenfunction andϕ is a non-trivial
harmonic p-form of constant length.

Although the length of parallel forms is constant, note thatTheorem 1.1does not contain
Proposition 1.3 in[16]. We here need the condition that all harmonicp-forms have constant
length. So, we study the case where a one non-trivial harmonicp-form has constant length.

Proposition 1.2. Let (M,g) be a connected oriented closed Riemannian manifold with
the pth Betti numberbp = bp(M) ≥ 1. If there exists a non-trivial harmonic p-forms of
constant length, then for allk ≥ 1 it follows that

λ
(p)
k (M,g) ≤ λ

(0)
bp+k−1(M,g).

There exist closed Riemannian manifolds such that all harmonicp-forms are of constatnt
length and not parallel. We exhibit such an example in Section3, Example 3.3. We also
give examples such that Gap(p,0) is zero and negative in Section3.
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A typical example ofTheorem 1.1is a connected oriented closed homogeneous Rie-
mannian manifold (cf.[4]). Another example is an oriented closed geometrically formal
Riemannian manifold, that is, exterior products of harmonic forms are still harmonic. Then,
the length of all harmonic forms on an oriented closed geometrically formal Riemannian
manifold is constant. For the details, see[9,10,13]. Recently, Guerini and Savo[6,7] study
the gap, Gap(p,p−1) = λ

(p)
1 − λ

(p−1)
1 , for compact Riemannian manifolds with boundary.

By the contraposition toTheorem 1.1, we have the following.

Corollary 1.3. Let (M,g) be a connected oriented closed Riemannian manifold with
bp(M) ≥ 1. If λ(p)

1 (M,g) > λ
(0)
1 (M,g), then there exists a harmonic p-form whose length is

not constant on M. In particular,(M,g) is neither homogeneous nor geometrically formal.

Next, we consider an estimate of the eigenvalueλ
(p)
k in terms of geometrical data of

Riemannian manifolds. Whileλ(0)
k is estimated above in terms of the lower bounds of the

Ricci curvature and the diameter by Cheng[2], λ(p)
k can not be estimated in terms of these

geometrical data (see Example 5.2 in[1]). However, if the length of all non-trivial harmonic
p-forms is constant, by combiningTheorem 1.1or Proposition 1.2with the estimate forλ(0)

k

by Cheng, we obtain estimates ofλ
(p)
k .

Corollary 1.4. Let (M,g) be a connected oriented closed Riemannian manifold with
bp(M) = bp ≥ 1, the Ricci curvature Ric≥ −κ2 and the diameter diam(M,g) ≥ d, where
κ, d are positive constants.

(1) If all harmonic p-forms have constant length, then it holds that for anyk ≥ 1

λ
(p)
k (M,g) ≤ m− 1

4
κ2 + c(m)

d2
k2.

(2) If there exists a non-trivial harmonic p-form of constant length, then it holds that for
anyk ≥ 1

λ
(p)
k (M,g) ≤ m− 1

4
κ2 + c(m)

d2
(bp + k − 1)2.

The constantc(m) > 0 depends only on the dimension m.

2. Proofs

To proveTheorem 1.1andProposition 1.2, we use the following lemma.

Lemma2.1. Let(M,g)beanorientedRiemannianmanifold. For1-formsθ1, θ2 andp-form
ϕ on M, it follows that

〈θ1 ∧ ϕ, θ2 ∧ ϕ〉 + 〈θ1 ∧ ∗ϕ, θ2 ∧ ∗ϕ〉 = 〈θ1, θ2〉 |ϕ|2, (2.1)

where∗ is the Hodge star operator.
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Proof. For 1-formθ andp-form ϕ, we have only to prove that

|θ ∧ ϕ|2 + |θ ∧ ∗ϕ|2 = |θ|2 |ϕ|2. (2.2)

In fact, if we setθ = θ1 + θ2 for (2.2), then it is easy to obtain(2.1).
Now, we show the equality(2.2). Since〈θ ∧ ϕ,ψ〉 = 〈ϕ, iθ�ψ〉 for any (p+ 1)-formψ,

we have

|θ ∧ ϕ|2 = 〈ϕ, iθ� (θ ∧ ϕ)〉 = 〈ϕ, iθ� (θ)ϕ − θ ∧ iθ� (ϕ)〉 = |θ|2|ϕ|2 − 〈ϕ, θ ∧ iθ� (ϕ)〉.
(2.3)

Similarly, since∗ is isometry, we have

|θ ∧ ∗ϕ|2 = |θ|2|ϕ|2 − 〈∗ϕ, θ ∧ iθ� (∗ϕ)〉.

If we denote byvg the volume form of (M,g), then we have

〈∗ϕ, θ ∧ iθ� (∗ϕ)〉vg = ϕ ∧ θ ∧ iθ� (∗ϕ) = (−1)piθ� (ϕ) ∧ θ ∧ ∗ϕ + iθ� (θ)ϕ ∧ ∗ϕ
= |θ|2|ϕ|2vg − (−1)p(m−p) ∗ ϕ ∧ θ ∧ iθ� (ϕ)

= {|θ|2|ϕ|2 − 〈ϕ, θ ∧ iθ� (ϕ)〉}vg.
Hence,

|θ ∧ ∗ϕ|2 = 〈ϕ, θ ∧ iθ� (ϕ)〉. (2.4)

Thus, from(2.3) and (2.4), we obtain the equality(2.2). �
Now we proveTheorem 1.1.

Proof. From the assumption, we can take harmonicp-forms {ϕ1, . . . , ϕbp} (bp ≥ 1) such
that

〈ϕi, ϕj〉 = δij. (2.5)

In fact, if {ϕ̃1, . . . , ϕ̃bp} is an orthonormal basis of the space of harmonicp-forms with
respect to theL2-inner product on (M,g), then it is enough to setϕi := √

vol(M,g)ϕ̃i,
where vol(M,g) means the volume of (M,g). Since the length of all harmonicp-forms is
constant,

2〈ϕi, ϕj〉 = |ϕi + ϕj|2 − |ϕi|2 − |ϕj|2

is constant onM. Hence, we have

〈ϕi, ϕj〉 = 1

vol(M,g)
(ϕi, ϕj)L2 = (ϕ̃i, ϕ̃j)L2 = δij.

Let fi (i = 1, . . . , k) be anith orthonormal eigenfunction on (M,g). Note that

(dfi, dfj)L2 = λ
(0)
i (M,g)δij and

∫
M

fi dµg = 0. (2.6)



480 J. Takahashi / Journal of Geometry and Physics 54 (2005) 476–484

We set thep-form

ωi := fiϕ1 (i = 1,2, . . .).

From(2.6), it follows that

(ωi, ϕj)L2 = ∫
M
fi〈ϕ1, ϕj〉 dµg = δ1j

∫
M
fi dµg = 0,

(ωi, ωj)L2 = ∫
M
fifj〈ϕ1, ϕ1〉 dµg = (fi, fj)L2 = δij.

(2.7)

If we take the linear subspaceE := 〈ϕ1, . . . , ϕbp, ω1, . . . , ωk〉R of the space of smooth
p-forms onM, by (2.7), then dimE = k + bp. By the min–max principle, we have

λ
(p)
k (M,g) ≤ sup

ω �=0∈E

{‖dω‖2
L2 + ‖δω‖2

L2

‖ω‖2
L2

}
. (2.8)

We have only to estimate the right hand side of(2.8)from above. For any non-zero element

ω ∈ E, we may writeω = ∑bp
i=1 aiϕi +

∑k
j=1 cjωj ∈ E, whereai, cj ∈ R and one of them

is non-zero. By(2.6) and (2.7), the denominator of(2.8) is

‖ω‖2
L2 =

∥∥∥∥∥∥

a1 +

k∑
j=1

cjfj


ϕ1

∥∥∥∥∥∥
2

L2

+
bp∑
i=2

a2
i ‖ϕi‖2

L2 =
bp∑
i=1

a2
i vol(M,g) +

k∑
j=1

c2
j .

(2.9)

Next, we compute the numerator of(2.8). Sinceϕj is harmonic, we have

‖dω‖2
L2 =

∥∥∥∥∥∥
k∑

j=1

cjd(fjϕ1)

∥∥∥∥∥∥
2

L2

=
∥∥∥∥∥∥

k∑
j=1

cjdfj ∧ ϕ1

∥∥∥∥∥∥
2

L2

=
k∑

i,j=1

cicj(dfi ∧ ϕ1, dfj ∧ ϕ1)L2. (2.10)

Similarly, sinceδ = (−1)mp+m+1 ∗ d∗ and∗ is isometry, we have

‖δω‖2
L2 =

∥∥∥∥∥∥
k∑

j=1

cjd ∗ (fjϕ1)

∥∥∥∥∥∥
2

L2

=
∥∥∥∥∥∥

k∑
j=1

cjdfj ∧ ∗ϕ1

∥∥∥∥∥∥
2

L2

=
k∑

i,j=1

cicj(dfi ∧ ∗ϕ1, dfj ∧ ∗ϕ1)L2. (2.11)

Hence, from(2.10), (2.11)andLemma 2.1, the numerator is

‖dω‖2
L2+‖δω‖2

L2 =
k∑

i,j=1

cicj

∫
M

{〈dfi ∧ ϕ1, dfj ∧ ϕ1〉+〈dfi ∧ ∗ϕ1, dfj ∧ ∗ϕ1〉} dµg
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=
k∑

i,j=1

cicj

∫
M

〈dfi, dfj〉 |ϕ1|2 dµg =
k∑

i,j=1

cicj(dfi, dfj)L2

=
k∑

i,j=1

cicjλ
(0)
i (M,g)δij ≤ λ

(0)
k (M,g)

k∑
j=1

c2
j . (2.12)

Therefore, by substituting(2.9), (2.12)to (2.8), we obtainλ(p)
k (M,g) ≤ λ

(0)
k (M,g).

Next, we consider the condition that the equalityλ
(p)
1 (M,g) = λ

(0)
1 (M,g) holds. Letf

andϕ be a first positive eigenfunction and a harmonicp-form of constant length on (M,g),
respectively. Iffϕ is a first positive eigenp-form on (M,g), by Lemma 2.1, then we have

λ
(p)
1 (M,g) = ‖d(fϕ)‖2

L2 + ‖d(f ∗ ϕ)‖2
L2

‖fϕ‖2
L2

= ‖df‖2
L2

‖f‖2
L2

= λ
(0)
1 (M,g).

We prove the opposite direction. Suppose thatλ
(p)
1 (M,g) = λ

(0)
1 (M,g). Sincefϕ is or-

thogonal to the space of harmonicp-formsHp(M,g) on (M,g) from (2.7), by the min–max
principle, we have

λ
(p)
1 (M,g) = inf

{‖dω‖2
L2 + ‖δω‖2

L2

‖ω‖2
L2

|ω �= 0 ⊥L2 Hp(M,g)

}

≤ ‖d(fϕ)‖2
L2 + ‖d(f ∗ ϕ)‖2

L2

‖fϕ‖2
L2

= ‖df‖2
L2

‖f‖2
L2

= λ
(0)
1 (M,g).

Fromλ
(p)
1 (M,g) = λ

(0)
1 (M,g), we have

λ
(p)
1 (M,g) = ‖d(fϕ)‖2

L2 + ‖δ(fϕ)‖2
L2

‖fϕ‖2
L2

.

Sincefϕ attains the infimum, we see that∆(p)(fϕ) = λ
(p)
1 (M,g)fϕ, that is,fϕ is a first

positive eigenp-form on (M,g). Thus, we have finished the proof ofTheorem 1.1. �

We proveProposition 1.2. The proof is the same as that ofTheorem 1.1. In order to prove
Proposition 1.2, in the proof ofTheorem 1.1, it is enough to take a test space for the min–
max principle asE := 〈ϕ, f1ϕ, . . . , fbp+k−1ϕ〉R, whereϕ is a non-trivial harmonicp-form

of constant length andfi is an ith eigenfunction on (M,g). Then, we haveλ(p)
k (M,g) ≤

λ
(0)
bp+k−1(M,g) for k ≥ 1.

3. Examples

We give some examples forTheorem 1.1. First, we give an example such that the equality
in Theorem 1.1holds fork = 1.
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Example 3.1. Let (Tm, g0) be anm-dimensional flat torus. Then, all harmonic forms are
parallel andλ(p)

1 (Tm, g0) = λ
(0)
1 (Tm, g0) for all p.

Next, we give an example such that the equality inTheorem 1.1does not hold fork = 1.

Example 3.2. Let Sm be them (≥3)-dimensional sphere. By[3] whenm is odd, and by
[15,12]whenmis even, there exists a family of metricshε onSm with the sectional curvature
Khε ≥ 0 and diam(S2n, hε) ≤ d1 such that

λ
(0)
1 (Sm, hε) ≥ C1,

λ
(p)
1 (Sm, hε) → 0 for 1 ≤ p ≤ m− 1,

(3.1)

asε → 0, whered1, C1 are positive constants independent ofε.
We consider the 2m-dimensional Riemannian manifold (M,gε) := (Sm × Tm, hε ⊕ g0).

Since all harmonicp-forms on (M,gε) are parallel, byTheorem 1.1, we haveλ(p)
1 (M,gε) ≤

λ
(0)
1 (M,gε).

Since Ricgε ≥ 0 and diam(M,gε) ≤ d2, by [5,11], there exists a constantC2 > 0 inde-
pendent ofε such that

λ
(0)
1 (M,gε) ≥ C2.

On the other hand, from the K̈unneth formula for the eigenvalues and(3.1), for 1 ≤ p ≤
m− 1 we have

λ
(p)
1 (M,gε) = min

a+b=p,i+j≥1
{λ(a)

i (Sm, hε) + λ
(b)
j (Tm, g0)} ≤ λ

(p)
1 (Sm, hε)

+λ
(0)
0 (Tm, g0) = λ

(p)
1 (Sm, hε) → 0 asε → 0,

whereλ(0)
0 means the zero eigenvalue. Therefore, for sufficiently smallε > 0, we have

λ
(p)
1 (M,gε) < λ

(0)
1 (M,gε) for 1 ≤ p ≤ m− 1.

The following example is based on Jammes[8], Example 1.2.

Example 3.3. LetH3 be the 3-dimensional closed Heisenberg manifold, that is,H = N/Γ ,
whereN is the 3-dimensional Heisenberg group

N :=







1 x z

0 1 y

0 0 1


 | x, y, z ∈ R




andΓ is the integer lattice inN. ThenH is a 2-step nilmanifold and aT 2-bundle overS1.
Note thatb1(H) = b2(H) = 2. The family of left invariant metricshε onH is defined as in
[8], Example 1.2, whereα > 1. All of non-trivial harmonic 1-forms and 2-forms on (H, hε)
have constant length, while none of them are parallel.
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We set (M4, gε) := (H3 × S1, hε ⊕ gS1). Then all of non-trivial harmonic 2-forms
on (M4, gε) have the same property as above. ByTheorem 1.1, we haveλ(2)

1 (M,gε) ≤
λ

(0)
1 (M,gε).

Since (M,gε) has bounded sectional curvature and bounded diameter, by[5,11], there
exists a constantC3 > 0 independent ofε such that

λ
(0)
1 (M,gε) ≥ C3.

From Example 1.2 in[8] and the K̈unneth formula as inExample 3.2, we find that

λ
(2)
1 (M,gε) → 0 asε → 0.

Thus, for sufficiently smallε, the inequalityλ(2)
1 (M,gε) < λ

(0)
1 (M,gε) holds.
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